Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Commun Biol ; 7(1): 526, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702425

RESUMO

COVID-19, caused by SARS-CoV-2, can lead to a severe inflammatory disease characterized by significant lymphopenia. However, the underlying cause for the depletion of T-cells in COVID-19 patients remains incompletely understood. In this study, we assessed the presence of different T-cell subsets in the progression of COVID-19 from mild to severe disease, with a focus on TCF1 expressing progenitor T-cells that are needed to replenish peripheral T-cells during infection. Our results showed a preferential decline in TCF1+ progenitor CD4 and CD8+ T-cells with disease severity. This decline was seen in various TCF1+ subsets including naive, memory and effector-memory cells, and surprisingly, was accompanied by a loss in cell division as seen by a marked decline in Ki67 expression. In addition, TCF1+ T-cells showed a reduction in pro-survival regulator, BcL2, and the appearance of a new population of TCF1 negative caspase-3 expressing cells in peripheral blood from patients with severe disease. The decline in TCF1+ T-cells was also seen in a subgroup of severe patients with vitamin D deficiency. Lastly, we found that sera from severe patients inhibited TCF1 transcription ex vivo which was attenuated by a blocking antibody against the cytokine, interleukin-12 (IL12). Collectively, our findings underscore the potential significance of TCF1+ progenitor T-cells in accounting for the loss of immunity in severe COVID-19 and outline an array of markers that could be used to identify disease progression.


Assuntos
COVID-19 , Fator 1-alfa Nuclear de Hepatócito , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/imunologia , COVID-19/patologia , Masculino , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Idoso , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Sci Rep ; 14(1): 10589, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719926

RESUMO

Maturity Onset Diabetes of the Young (MODY) is a young-onset, monogenic form of diabetes without needing insulin treatment. Diagnostic testing is expensive. To aid decisions on who to test, we aimed to develop a MODY probability calculator for paediatric cases at the time of diabetes diagnosis, when the existing "MODY calculator" cannot be used. Firth logistic regression models were developed on data from 3541 paediatric patients from the Swedish 'Better Diabetes Diagnosis' (BDD) population study (n = 46 (1.3%) MODY (HNF1A, HNF4A, GCK)). Model performance was compared to using islet autoantibody testing. HbA1c, parent with diabetes, and absence of polyuria were significant independent predictors of MODY. The model showed excellent discrimination (c-statistic = 0.963) and calibrated well (Brier score = 0.01). MODY probability > 1.3% (ie. above background prevalence) had similar performance to being negative for all 3 antibodies (positive predictive value (PPV) = 10% v 11% respectively i.e. ~ 1 in 10 positive test rate). Probability > 1.3% and negative for 3 islet autoantibodies narrowed down to 4% of the cohort, and detected 96% of MODY cases (PPV = 31%). This MODY calculator for paediatric patients at time of diabetes diagnosis will help target genetic testing to those most likely to benefit, to get the right diagnosis.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Criança , Masculino , Feminino , Adolescente , Fator 4 Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Pré-Escolar , Autoanticorpos/sangue , Autoanticorpos/imunologia , Hemoglobinas Glicadas/análise , Quinases do Centro Germinativo/genética , Suécia , Glucoquinase/genética
3.
Cell Death Dis ; 15(4): 288, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654006

RESUMO

Cancer stem cells (CSCs) are believed to be responsible for cancer metastasis and recurrence due to their self-renewal ability and resistance to treatment. However, the mechanisms that regulate the stemness of CSCs remain poorly understood. Recently, evidence has emerged suggesting that long non-coding RNAs (lncRNAs) play a crucial role in regulating cancer cell function in different types of malignancies, including gastric cancer (GC). However, the specific means by which lncRNAs regulate the function of gastric cancer stem cells (GCSCs) are yet to be fully understood. In this study, we investigated a lncRNA known as HNF1A-AS1, which is highly expressed in GCSC s and serves as a critical regulator of GCSC stemness and tumorigenesis. Our experiments, both in vitro and in vivo, demonstrated that HNF1A-AS1 maintained the stemness of GC cells. Further analysis revealed that HNF1A-AS1, transcriptionally activated by CMYC, functioned as a competing endogenous RNA by binding to miR-150-5p to upregulate ß-catenin expression. This in turn facilitated the entry of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway and promote CMYC expression, thereby forming a positive feedback loop that sustained the stemness of GCSCs. We also found that blocking the Wnt/ß-catenin pathway effectively inhibited the function of HNF1A-AS1, ultimately resulting in the inhibition of GCSC stemness. Taken together, our results demonstrated that HNF1A-AS1 is a regulator of the stemness of GCSCs and could serve as a potential marker for targeted GC therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Longo não Codificante , Neoplasias Gástricas , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt/genética
4.
Yi Chuan ; 46(3): 256-262, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632103

RESUMO

Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic ß-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 1-alfa Nuclear de Hepatócito , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/metabolismo , Mutação
5.
Nat Immunol ; 25(5): 902-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589618

RESUMO

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Hipersensibilidade , Fator 1 de Ligação ao Facilitador Linfoide , Células-Tronco Multipotentes , Fator 1 de Transcrição de Linfócitos T , Células Th2 , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Células Th2/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Hipersensibilidade/imunologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Linfopoietina do Estroma do Timo , Animais , Células Cultivadas , Camundongos
6.
Biochem Pharmacol ; 223: 116133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494066

RESUMO

Despite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells caused by HNF1A knockdown, thereby exacerbating the GBM progression. Correctively, our study has clarified the explicit mechanism by which HNF1A promotes GBM malignancy and provides a new therapeutic target for further clinical application.


Assuntos
Glioblastoma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433330

RESUMO

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 4 Nuclear de Hepatócito , Regiões Promotoras Genéticas , Ativação Transcricional , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Ativação Transcricional/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Variação Genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular
9.
Biochem Pharmacol ; 220: 116016, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176619

RESUMO

Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.


Assuntos
RNA Longo não Codificante , Humanos , Citocromo P-450 CYP3A/genética , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Fígado , RNA Longo não Codificante/genética
10.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228910

RESUMO

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diterpenos , Resistencia a Medicamentos Antineoplásicos , Compostos de Epóxi , Proteínas Hedgehog , Fator 1-alfa Nuclear de Hepatócito , Neoplasias Pulmonares , Paclitaxel , Fenantrenos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Humanos , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Hedgehog/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Animais , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Camundongos , Camundongos Endogâmicos BALB C , Células A549
11.
Diabet Med ; 41(5): e15265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38093550

RESUMO

AIMS: The aim is to identify people with HNF1A-MODY among individuals in diabetic cohort solely based on low hs-CRP serum level and early diabetes onset. METHODS: In 3537 participants, we analyzed the hs-CRP levels. We analyzed the HNF1A gene in 50 participants (1.4% of the cohort) with type 1 or type 2 diabetes who had hs-CRP ≤0.25 mg/L and were diagnosed with diabetes mellitus (DM) at the age of 8-40 years. We functionally characterized two identified missense variants. RESULTS: Three participants had a rare variant in the HNF1A gene, two of which we classified as likely pathogenic: c.1369_1384dup (p.Val462Aspfs*92) and c.737T>G (p.Val246Gly), and one as likely benign: c.1573A>T (p.Thr525Ser). Our functional studies revealed that p.Val246Gly decreased HNF1α transactivation activity to ~59% and the DNA binding ability to ~16% of the wild-type, while p.Thr525Ser variant showed no effect on transactivation activity, DNA binding, nor nuclear localization. Based on the two identified HNF1A-MODY patients among 3537 people with diabetes, we estimate 0.057% as the minimal HNF1A-MODY prevalence in Slovakia. A positive predictive value of hs-CRP ≤0.25 mg/L for finding HNF1A-MODY individuals was 4.0% (95% CI 0.7%, 13.5%). CONCLUSIONS: Hs-CRP value and age of DM onset could be an alternative approach to current diagnostic criteria with a potential to increase the diagnostic rate of HNF1A-MODY.


Assuntos
Proteína C-Reativa , Diabetes Mellitus Tipo 2 , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Proteína C-Reativa/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Biomarcadores , Idade de Início , Fator 1-alfa Nuclear de Hepatócito/genética , DNA , Mutação
12.
Acta Diabetol ; 61(1): 131-134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37730861

RESUMO

Maturity Onset Diabetes of the Young (MODY) is a monogenic autosomal dominant disorder affecting 1-5 % of all patients with diabetes mellitus. In Caucasians, GCK and HNF1A mutations are the most common cause of MODY. Here, we report two family members carrying a genetic variant of both GCK and HNF1A gene and their nine year clinical follow-up. Our report urges physicians to be cautious when variants in two genes are found in a single patient and suggests that collaboration with MODY genetics experts is necessary for correct diagnosis and treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Núcleo Familiar , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Família , Glucoquinase/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Itália , Mutação
13.
J Med Virol ; 95(12): e29254, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38018242

RESUMO

Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Antivirais/farmacologia , DNA Circular , DNA Viral/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Ubiquitinação , Replicação Viral
14.
Diabetologia ; 66(12): 2226-2237, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37798422

RESUMO

AIMS/HYPOTHESIS: Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS: We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS: In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION: Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Criança , Projetos Piloto , Diabetes Mellitus Tipo 2/metabolismo , Fenótipo , Autoanticorpos/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Noruega/epidemiologia , Compostos de Sulfonilureia , Mutação
15.
Front Endocrinol (Lausanne) ; 14: 1173471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396173

RESUMO

The frequent misdiagnosis of MODY (Maturity-Onset Diabetes of the Young) subtypes makes it necessary to clarify the clinical spectrum of the disease phenotypes in suspected subjects so that accurate diagnosis and management plans can be introduced as early as possible in the course of the disease. We report the case of a MODY subtype that was initially characterized as variant of uncertain significance (VUS) but was later changed to a likely pathogenic variant following our report of two cases where the full expression of the clinical phenotype was described. HNF1A-MODY (Maturity Onset Diabetes of the Young type 3) is one of the most common subtypes of MODY. Due to its variable clinical presentation, and the concerns with being misdiagnosed as either type 1 or type 2 diabetes, DNA sequencing is needed to confirm the diagnosis. This case report illustrates the clinical scenario leading to the identification of the gene variant c.416T>C(p. Leu139Pro) in the HNF1A gene, initially reported as a VUS and later upgraded to a likely pathogenic variant. Though the mutation was described in two Czech family members in 2020, the clinical course and phenotype was not characterized. Therefore, there was the need to fully describe the spectrum of the disease arising from the mutation. The case report fully describes the clinical spectrum of this mutation and provides much needed clinical management approaches to the wider scientific community.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Testes Genéticos , Mutação , Fenótipo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo
16.
Front Endocrinol (Lausanne) ; 14: 1177268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396188

RESUMO

Background: HNF1A is an essential component of the transcription factor network that controls pancreatic ß-cell differentiation, maintenance, and glucose stimulated insulin secretion (GSIS). A continuum of protein malfunction is caused by variations in the HNF1A gene, from severe loss-of-function (LOF) variants that cause the highly penetrant Maturity Onset Diabetes of the Young (MODY) to milder LOF variants that are far less penetrant but impart a population-wide risk of type 2 diabetes that is up to five times higher. Before classifying and reporting the discovered variations as relevant in clinical diagnosis, a critical review is required. Functional investigations offer substantial support for classifying a variant as pathogenic, or otherwise as advised by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) ACMG/AMP criteria for variant interpretation. Objective: To determine the molecular basis for the variations in the HNF1A gene found in patients with monogenic diabetes in India. Methods: We performed functional protein analyses such as transactivation, protein expression, DNA binding, nuclear localization, and glucose stimulated insulin secretion (GSIS) assay, along with structural prediction analysis for 14 HNF1A variants found in 20 patients with monogenic diabetes. Results: Of the 14 variants, 4 (28.6%) were interpreted as pathogenic, 6 (42.8%) as likely pathogenic, 3 (21.4%) as variants of uncertain significance, and 1 (7.14%) as benign. Patients harboring the pathogenic/likely pathogenic variants were able to successfully switch from insulin to sulfonylureas (SU) making these variants clinically actionable. Conclusion: Our findings are the first to show the need of using additive scores during molecular characterization for accurate pathogenicity evaluations of HNF1A variants in precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Medicina de Precisão , Alelos , Glucose , Fator 1-alfa Nuclear de Hepatócito/genética
17.
Diabetes ; 72(10): 1502-1516, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440709

RESUMO

Hepatocyte nuclear factor 1α (HNF1α) plays essential roles in controlling development and metabolism; its mutations are clearly linked to the occurrence of maturity-onset diabetes of the young (MODY3) in humans. Lysine 117 (K117) to glutamic acid (E117) mutation in the HNF1α gene has been clinically associated with MODY3, but no functional data on this variant are available. Here, we addressed the role of lysine 117 in HNF1α function using a knock-in animal model and site-directed mutagenesis. HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. These phenotypes were very similar to those of mice with complete HNF1α deficiency, suggesting that K117 is critical to HNF1α functions. K117E homozygotes developed diabetes in the early postnatal period. The relative deficiency of serum insulin levels and the normal response to insulin treatment in homozygous mice were markedly similar to those in the MODY3 disorder in humans. Moreover, K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of MODY3 as well. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization. Collectively, our findings reveal a previously unappreciated role of POU domain of HNF1α in homodimerization and provide important clues for identifying the molecular basis of HNF1α-related diseases such as MODY3. ARTICLE HIGHLIGHTS: HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. K117E homozygotes developed diabetes in the early postnatal period. K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of maturity-onset diabetes of the young. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome de Fanconi , Intolerância à Glucose , Insulinas , Camundongos , Humanos , Animais , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Lisina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , DNA , Insulinas/genética , Mutação
18.
Cell Death Dis ; 14(5): 302, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137894

RESUMO

Renal defects in maturity onset diabetes of the young 3 (MODY3) patients and Hnf1a-/- mice suggest an involvement of HNF1A in kidney development and/or its function. Although numerous studies have leveraged on Hnf1α-/- mice to infer some transcriptional targets and function of HNF1A in mouse kidneys, species-specific differences obviate a straightforward extrapolation of findings to the human kidney. Additionally, genome-wide targets of HNF1A in human kidney cells have yet to be identified. Here, we leveraged on human in vitro kidney cell models to characterize the expression profile of HNF1A during renal differentiation and in adult kidney cells. We found HNF1A to be increasingly expressed during renal differentiation, with peak expression on day 28 in the proximal tubule cells. HNF1A ChIP-Sequencing (ChIP-Seq) performed on human pluripotent stem cell (hPSC)-derived kidney organoids identified its genome-wide putative targets. Together with a qPCR screen, we found HNF1A to activate the expression of SLC51B, CD24, and RNF186 genes. Importantly, HNF1A-depleted human renal proximal tubule epithelial cells (RPTECs) and MODY3 human induced pluripotent stem cell (hiPSC)-derived kidney organoids expressed lower levels of SLC51B. SLC51B-mediated estrone sulfate (E1S) uptake in proximal tubule cells was abrogated in these HNF1A-deficient cells. MODY3 patients also exhibit significantly higher excretion of urinary E1S. Overall, we report that SLC51B is a target of HNF1A responsible for E1S uptake in human proximal tubule cells. As E1S serves as the main storage form of nephroprotective estradiol in the human body, lowered E1S uptake and increased E1S excretion may reduce the availability of nephroprotective estradiol in the kidneys, contributing to the development of renal disease in MODY3 patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Estradiol , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ubiquitina-Proteína Ligases
19.
J Diabetes ; 15(6): 519-531, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37226652

RESUMO

BACKGROUND: Glucokinase maturity-onset diabetes of the young (GCK-MODY) is difficult to distinguish from other diabetic forms. This article aims to characterize the differences in results from routine examinations between GCK-MODY and hepatocyte nuclear factor 1-α (HNF1A)-MODY or type 2 diabetes (T2D) patients in different periods of diabetes. METHODS: Ovid Medline, Embase, and the Cochrane Library were searched up until October 9, 2022 for articles containing baseline characteristics of GCK-MODY, HNF1A-MOFY, and T2D, excluding pregnant women. The pooled standardized mean differences were derived using a random-effects model. RESULTS: Compared to HNF1A-MODY, GCK-MODY patients had lower indicators of glucose metabolism. Total triglycerides (TG) (-0.93 [-1.66, -0.21] mmol/l) were consistently lower in GCK-MODY patients in the all-family-members subgroup analysis. Compared to T2D, GCK-MODY patients were younger at diagnosis and had lower body mass index (BMI), lower high-sensitivity C-reactive protein (hsCRP) (-0.60 [-0.75, -0.44] mg/l), lower fasting C-peptide (FCP), and lower 2-hour postprandial glucose (2-h PG). Indicators of glycated hemoglobin (HbA1c) and fasting blood glucose (FPG) were consistently lower in subgroup studies with all family members of GCK-MODY patients as well. CONCLUSIONS: Lower HbA1c, FPG, 2-h PG, and change in 2-h PG may help to diagnose GCK-MODY differentially from HNF1A-MODY at an early stage, and lower TG may strengthen such a diagnosis in the follow-up stages. Younger age combined with lower BMI, FCP, hsCRP, and 2-h PG may be useful to distinguish GCK-MODY from MODY-like T2D, whereas results of glucose metabolism indicators such as HbA1c and FPG may not help physicians until after a long follow-up period.


Assuntos
Diabetes Mellitus Tipo 2 , Feminino , Humanos , Gravidez , Proteína C-Reativa , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Glucose , Hemoglobinas Glicadas , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Mutação , Triglicerídeos
20.
Int J Oncol ; 62(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36825600

RESUMO

DNA double­strand break repair is critically involved in oxaliplatin resistance in pancreatic ductal adenocarcinoma (PDAC). Hepatocyte nuclear factor 1 homeobox A (HNF1A) has received increased attention regarding its role in cancer progression. The present study explored the role of HNF1A in oxaliplatin resistance in PDAC. The results revealed that HNF1A expression was negatively associated with oxaliplatin chemoresistance in PDAC tissues and cell lines. HNF1A inhibition promoted the proliferation, colony formation and stemness of PDAC cells, and suppressed their apoptosis. Furthermore, HNF1A inhibition switched nonhomologous end joining to homologous recombination, thereby enhancing genomic stability and oxaliplatin resistance. Mechanistically, HNF1A transcriptionally activates p53­binding protein 1 (53BP1) expression by directly interacting with the 53BP1 promoter region. Upregulation of HNF1A and 53BP1 induced significant inhibition of PDAC growth and oxaliplatin resistance in patient­derived PDAC xenograft models and orthotopic models. In conclusion, the findings of the present study suggested that HNF1A/53BP1 may be a promising PDAC therapeutic target for overcoming oxaliplatin resistance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Oxaliplatina/farmacologia , Proliferação de Células/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA